Skip to content

ModelBuilder API

ModelBuilder

A programmatic interface for building epidemiological models.

This class provides a fluent API for constructing Model instances by progressively adding disease states, stratifications, transitions, parameters, and initial conditions. It includes validation methods to ensure model consistency before building.

Attributes:

Name Type Description
_name str

The model name.

_description str | None

The model description.

_version str | None

The model version.

_disease_states list[DiseaseState]

List of disease states in the model.

_stratifications list[Stratification]

List of population stratifications.

_transitions list[Transition]

List of transitions between states.

_parameters list[Parameter]

List of model parameters.

_initial_conditions InitialConditions | None

Initial population conditions.

Source code in epimodel/api/model_builder.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
class ModelBuilder:
    """
    A programmatic interface for building epidemiological models.

    This class provides a fluent API for constructing Model instances by progressively
    adding disease states, stratifications, transitions, parameters, and
    initial conditions. It includes validation methods to ensure model consistency
    before building.

    Attributes
    ----------
    _name : str
        The model name.
    _description : str | None
        The model description.
    _version : str | None
        The model version.
    _disease_states : list[DiseaseState]
        List of disease states in the model.
    _stratifications : list[Stratification]
        List of population stratifications.
    _transitions : list[Transition]
        List of transitions between states.
    _parameters : list[Parameter]
        List of model parameters.
    _initial_conditions : InitialConditions | None
        Initial population conditions.
    """

    def __init__(
        self,
        name: str,
        description: str | None = None,
        version: str | None = None,
    ):
        """
        Initialize the ModelBuilder.

        Parameters
        ----------
        name : str
            The unique name that identifies the model.
        description : str | None, default=None
            A human-readable description of the model's purpose and function.
        version : str | None, default=None
            The version number of the model.
        """
        self._name: str = name
        self._description: str | None = description
        self._version: str | None = version

        self._disease_states: list[DiseaseState] = []
        self._stratifications: list[Stratification] = []
        self._transitions: list[Transition] = []
        self._parameters: list[Parameter] = []
        self._initial_conditions: InitialConditions | None = None

        logging.info(
            (
                f"Initialized ModelBuilder: name='{self._name}', "
                f"version='{self._version or 'N/A'}'"
            )
        )

    def add_disease_state(self, id: str, name: str) -> Self:
        """
        Add a disease state to the model.

        Parameters
        ----------
        id : str
            Unique identifier for the disease state.
        name : str
            Human-readable name for the disease state.

        Returns
        -------
        ModelBuilder
            Self for method chaining.
        """
        self._disease_states.append(DiseaseState(id=id, name=name))
        logging.info(f"Added disease state: id='{id}', name='{name}'")
        return self

    def add_stratification(self, id: str, categories: list[str]) -> Self:
        """
        Add a population stratification to the model.

        Parameters
        ----------
        id : str
            Unique identifier for the stratification.
        categories : list[str]
            list of category identifiers within this stratification.

        Returns
        -------
        ModelBuilder
            Self for method chaining.
        """
        self._stratifications.append(Stratification(id=id, categories=categories))
        logging.info(f"Added stratification: id='{id}', categories={categories}")
        return self

    def add_parameter(
        self,
        id: str,
        value: float,
        description: str | None = None,
    ) -> Self:
        """
        Add a global parameter to the model.

        Parameters
        ----------
        id : str
            Unique identifier for the parameter.
        value : float
            Numerical value of the parameter.
        description : str | None, default=None
            Human-readable description of the parameter.

        Returns
        -------
        ModelBuilder
            Self for method chaining.
        """
        self._parameters.append(Parameter(id=id, value=value, description=description))
        logging.info(f"Added parameter: id='{id}', value={value}")
        return self

    def add_transition(
        self,
        id: str,
        source: list[str],
        target: list[str],
        rate: str | float | None = None,
        stratified_rates: list[StratifiedRateDict] | None = None,
        condition: Condition | None = None,
    ) -> Self:
        """
        Add a transition between states to the model.

        Parameters
        ----------
        id : str
            Unique identifier for the transition.
        source : list[str]
            List of source state/category identifiers.
        target : list[str]
            List of target state/category identifiers.
        rate : str | float | None, default=None
            Default mathematical formula, parameter reference, or constant value for
            the transition rate. Used when no stratified rate matches.
            Can be:
            - A parameter reference (e.g., "beta")
            - A constant value (e.g., "0.5" or 0.5)
            - A mathematical formula (e.g., "beta * S * I / N")

            Special variables available in formulas:
            - N: Total population (automatically calculated)
            - step or t: Current simulation step (both are equivalent)
            - pi, e: Mathematical constants

        stratified_rates : list[dict] | None, default=None
            List of stratification-specific rates. Each dict must contain:
            - "conditions": List of dicts with "stratification" and "category" keys
            - "rate": Rate expression string

        condition : Condition| None, default=None
            Logical conditions that must be met for the transition.

        Returns
        -------
        ModelBuilder
            Self for method chaining.
        """
        # Convert rate to string if numeric
        if isinstance(rate, int) or isinstance(rate, float):
            rate = str(rate)

        # Convert stratified rates dicts to Pydantic objects
        stratified_rates_objects: list[StratifiedRate] | None = None
        if stratified_rates:
            stratified_rates_objects = []
            for rate_dict in stratified_rates:
                conditions = [
                    StratificationCondition(**cond) for cond in rate_dict["conditions"]
                ]
                stratified_rates_objects.append(
                    StratifiedRate(conditions=conditions, rate=str(rate_dict["rate"]))
                )

        self._transitions.append(
            Transition(
                id=id,
                source=source,
                target=target,
                rate=rate,
                stratified_rates=stratified_rates_objects,
                condition=condition,
            )
        )
        logging.info(
            (
                f"Added transition: id='{id}', source={source}, target={target}, "
                f"rate='{rate}', stratified_rates={
                    len(stratified_rates_objects) if stratified_rates_objects else 0
                }"
            )
        )
        return self

    def create_condition(
        self,
        logic: Literal[LogicOperators.AND, LogicOperators.OR],
        rules: list[RuleDict],
    ) -> Condition:
        """
        Create a condition object for use in transitions.

        Parameters
        ----------
        logic : Literal["and", "or"]
            How to combine the rules.
        rules : List[RuleDict]
            List of rule dictionaries with 'variable', 'operator', and 'value' keys.
            Each dictionary must have:
            - 'variable': str (format '<prefix>:<variable_id>')
            - 'operator': Literal["eq", "neq", "gt", "get", "lt", "let"]
            - 'value': str | int | float | bool

        Returns
        -------
        Condition
            The created condition object.

        Examples
        --------
        >>> condition = builder.create_condition(
        ...     "and",
        ...     [
        ...         {"variable": "states:I", "operator": "gt", "value": 0},
        ...         {"variable": "strati:age", "operator": "eq", "value": "adult"},
        ...     ],
        ... )
        """
        rule_objects: list[Rule] = []
        for rule_dict in rules:
            rule_objects.append(
                Rule(
                    variable=rule_dict["variable"],
                    operator=rule_dict["operator"],
                    value=rule_dict["value"],
                )
            )

        return Condition(logic=logic, rules=rule_objects)

    def set_initial_conditions(
        self,
        population_size: int,
        disease_state_fractions: list[DiseaseStateFractionDict],
        stratification_fractions: list[StratificationFractionsDict] | None = None,
    ) -> Self:
        """
        Set the initial conditions for the model.

        Parameters
        ----------
        population_size : int
            Total population size.
        disease_state_fractions : list[DiseaseStateFractionDict]
            List of disease state fractions. Each item is a dictionary with:
            - "disease_state": str (disease state id)
            - "fraction": float (fractional size)

            Example:
            [
                {"disease_state": "S", "fraction": 0.99},
                {"disease_state": "I", "fraction": 0.01},
                {"disease_state": "R", "fraction": 0.0}
            ]
        stratification_fractions : list[StratificationFractionsDict] | None,
            default=None
            List of stratification fractions. Each item is a dictionary with:
            - "stratification": str (stratification id)
            - "fractions": list of dicts, each with "category" and "fraction"

            Example:
            [
                {
                    "stratification": "age_group",
                    "fractions": [
                        {"category": "young", "fraction": 0.3},
                        {"category": "adult", "fraction": 0.5},
                        {"category": "elderly", "fraction": 0.2}
                    ]
                }
            ]

        Returns
        -------
        ModelBuilder
            Self for method chaining.

        Raises
        ------
        ValueError
            If initial conditions have already been set.
        """
        if self._initial_conditions is not None:
            raise ValueError("Initial conditions have already been set")

        disease_state_fractions_list: list[DiseaseStateFraction] = []
        for ds_dict in disease_state_fractions:
            disease_state_fractions_list.append(
                DiseaseStateFraction(
                    disease_state=ds_dict["disease_state"],
                    fraction=ds_dict["fraction"],
                )
            )

        strat_fractions_list: list[StratificationFractions] = []
        if stratification_fractions:
            for strat_dict in stratification_fractions:
                fractions_list: list[StratificationFraction] = []
                for frac_dict in strat_dict["fractions"]:
                    fractions_list.append(
                        StratificationFraction(
                            category=frac_dict["category"],
                            fraction=frac_dict["fraction"],
                        )
                    )
                strat_fractions_list.append(
                    StratificationFractions(
                        stratification=strat_dict["stratification"],
                        fractions=fractions_list,
                    )
                )

        self._initial_conditions = InitialConditions(
            population_size=population_size,
            disease_state_fractions=disease_state_fractions_list,
            stratification_fractions=strat_fractions_list,
        )
        state_ids = [ds["disease_state"] for ds in disease_state_fractions]
        logging.info(
            (
                f"Set initial conditions: population_size={population_size}, "
                f"states={state_ids}"
            )
        )
        return self

    def get_summary(self) -> dict[str, str | int | list[str] | None]:
        """
        Get a summary of the current model builder state.

        Returns
        -------
        dict[str, dict[str, str | int | list[str] | None]]
            Dictionary containing summary information about the model being built.
        """
        return {
            "name": self._name,
            "description": self._description,
            "version": self._version,
            "disease_states_count": len(self._disease_states),
            "disease_state_ids": [state.id for state in self._disease_states],
            "stratifications_count": len(self._stratifications),
            "stratification_ids": [strat.id for strat in self._stratifications],
            "transitions_count": len(self._transitions),
            "transition_ids": [trans.id for trans in self._transitions],
            "parameters_count": len(self._parameters),
            "parameter_ids": [param.id for param in self._parameters],
            "has_initial_conditions": self._initial_conditions is not None,
        }

    def clone(self) -> Self:
        """
        Create a deep copy of this ModelBuilder.

        Returns
        -------
        ModelBuilder
            A new ModelBuilder instance with the same configuration.
        """

        new_builder = type(self)(self._name, self._description, self._version)

        new_builder._disease_states = copy.deepcopy(self._disease_states)
        new_builder._stratifications = copy.deepcopy(self._stratifications)
        new_builder._transitions = copy.deepcopy(self._transitions)
        new_builder._parameters = copy.deepcopy(self._parameters)
        new_builder._initial_conditions = copy.deepcopy(self._initial_conditions)

        return new_builder

    def reset(self) -> Self:
        """
        Reset the builder to empty state while keeping name, description, and version.

        Returns
        -------
        ModelBuilder
            Self for method chaining.
        """
        self._disease_states.clear()
        self._stratifications.clear()
        self._transitions.clear()
        self._parameters.clear()
        self._initial_conditions = None
        return self

    def build(self, typology: Literal[ModelTypes.DIFFERENCE_EQUATIONS]) -> Model:
        """
        Build and return the final Model instance.

        Parameters
        ----------
        typology : Literal["DifferenceEquations"]
            Type of the model.

        Returns
        -------
        Model
            The constructed epidemiological model.

        Raises
        ------
        ValueError
            If validation fails or required components are missing.
        """
        if self._initial_conditions is None:
            raise ValueError("Initial conditions must be set")

        population = Population(
            disease_states=self._disease_states,
            stratifications=self._stratifications,
            transitions=self._transitions,
            initial_conditions=self._initial_conditions,
        )

        dynamics = Dynamics(typology=typology, transitions=self._transitions)

        model = Model(
            name=self._name,
            description=self._description,
            version=self._version,
            population=population,
            parameters=self._parameters,
            dynamics=dynamics,
        )

        logging.info(
            f"Model '{self._name}' successfully built with typology '{typology}'."
        )

        return model

Functions

__init__

__init__(
    name: str,
    description: str | None = None,
    version: str | None = None,
)

Initialize the ModelBuilder.

Parameters:

Name Type Description Default
name str

The unique name that identifies the model.

required
description str | None

A human-readable description of the model's purpose and function.

None
version str | None

The version number of the model.

None
Source code in epimodel/api/model_builder.py
def __init__(
    self,
    name: str,
    description: str | None = None,
    version: str | None = None,
):
    """
    Initialize the ModelBuilder.

    Parameters
    ----------
    name : str
        The unique name that identifies the model.
    description : str | None, default=None
        A human-readable description of the model's purpose and function.
    version : str | None, default=None
        The version number of the model.
    """
    self._name: str = name
    self._description: str | None = description
    self._version: str | None = version

    self._disease_states: list[DiseaseState] = []
    self._stratifications: list[Stratification] = []
    self._transitions: list[Transition] = []
    self._parameters: list[Parameter] = []
    self._initial_conditions: InitialConditions | None = None

    logging.info(
        (
            f"Initialized ModelBuilder: name='{self._name}', "
            f"version='{self._version or 'N/A'}'"
        )
    )

add_disease_state

add_disease_state(id: str, name: str) -> Self

Add a disease state to the model.

Parameters:

Name Type Description Default
id str

Unique identifier for the disease state.

required
name str

Human-readable name for the disease state.

required

Returns:

Type Description
ModelBuilder

Self for method chaining.

Source code in epimodel/api/model_builder.py
def add_disease_state(self, id: str, name: str) -> Self:
    """
    Add a disease state to the model.

    Parameters
    ----------
    id : str
        Unique identifier for the disease state.
    name : str
        Human-readable name for the disease state.

    Returns
    -------
    ModelBuilder
        Self for method chaining.
    """
    self._disease_states.append(DiseaseState(id=id, name=name))
    logging.info(f"Added disease state: id='{id}', name='{name}'")
    return self

add_stratification

add_stratification(id: str, categories: list[str]) -> Self

Add a population stratification to the model.

Parameters:

Name Type Description Default
id str

Unique identifier for the stratification.

required
categories list[str]

list of category identifiers within this stratification.

required

Returns:

Type Description
ModelBuilder

Self for method chaining.

Source code in epimodel/api/model_builder.py
def add_stratification(self, id: str, categories: list[str]) -> Self:
    """
    Add a population stratification to the model.

    Parameters
    ----------
    id : str
        Unique identifier for the stratification.
    categories : list[str]
        list of category identifiers within this stratification.

    Returns
    -------
    ModelBuilder
        Self for method chaining.
    """
    self._stratifications.append(Stratification(id=id, categories=categories))
    logging.info(f"Added stratification: id='{id}', categories={categories}")
    return self

add_parameter

add_parameter(
    id: str, value: float, description: str | None = None
) -> Self

Add a global parameter to the model.

Parameters:

Name Type Description Default
id str

Unique identifier for the parameter.

required
value float

Numerical value of the parameter.

required
description str | None

Human-readable description of the parameter.

None

Returns:

Type Description
ModelBuilder

Self for method chaining.

Source code in epimodel/api/model_builder.py
def add_parameter(
    self,
    id: str,
    value: float,
    description: str | None = None,
) -> Self:
    """
    Add a global parameter to the model.

    Parameters
    ----------
    id : str
        Unique identifier for the parameter.
    value : float
        Numerical value of the parameter.
    description : str | None, default=None
        Human-readable description of the parameter.

    Returns
    -------
    ModelBuilder
        Self for method chaining.
    """
    self._parameters.append(Parameter(id=id, value=value, description=description))
    logging.info(f"Added parameter: id='{id}', value={value}")
    return self

add_transition

add_transition(
    id: str,
    source: list[str],
    target: list[str],
    rate: str | float | None = None,
    stratified_rates: list[StratifiedRateDict]
    | None = None,
    condition: Condition | None = None,
) -> Self

Add a transition between states to the model.

Parameters:

Name Type Description Default
id str

Unique identifier for the transition.

required
source list[str]

List of source state/category identifiers.

required
target list[str]

List of target state/category identifiers.

required
rate str | float | None

Default mathematical formula, parameter reference, or constant value for the transition rate. Used when no stratified rate matches. Can be: - A parameter reference (e.g., "beta") - A constant value (e.g., "0.5" or 0.5) - A mathematical formula (e.g., "beta * S * I / N")

Special variables available in formulas: - N: Total population (automatically calculated) - step or t: Current simulation step (both are equivalent) - pi, e: Mathematical constants

None
stratified_rates list[dict] | None

List of stratification-specific rates. Each dict must contain: - "conditions": List of dicts with "stratification" and "category" keys - "rate": Rate expression string

None
condition Condition | None

Logical conditions that must be met for the transition.

None

Returns:

Type Description
ModelBuilder

Self for method chaining.

Source code in epimodel/api/model_builder.py
def add_transition(
    self,
    id: str,
    source: list[str],
    target: list[str],
    rate: str | float | None = None,
    stratified_rates: list[StratifiedRateDict] | None = None,
    condition: Condition | None = None,
) -> Self:
    """
    Add a transition between states to the model.

    Parameters
    ----------
    id : str
        Unique identifier for the transition.
    source : list[str]
        List of source state/category identifiers.
    target : list[str]
        List of target state/category identifiers.
    rate : str | float | None, default=None
        Default mathematical formula, parameter reference, or constant value for
        the transition rate. Used when no stratified rate matches.
        Can be:
        - A parameter reference (e.g., "beta")
        - A constant value (e.g., "0.5" or 0.5)
        - A mathematical formula (e.g., "beta * S * I / N")

        Special variables available in formulas:
        - N: Total population (automatically calculated)
        - step or t: Current simulation step (both are equivalent)
        - pi, e: Mathematical constants

    stratified_rates : list[dict] | None, default=None
        List of stratification-specific rates. Each dict must contain:
        - "conditions": List of dicts with "stratification" and "category" keys
        - "rate": Rate expression string

    condition : Condition| None, default=None
        Logical conditions that must be met for the transition.

    Returns
    -------
    ModelBuilder
        Self for method chaining.
    """
    # Convert rate to string if numeric
    if isinstance(rate, int) or isinstance(rate, float):
        rate = str(rate)

    # Convert stratified rates dicts to Pydantic objects
    stratified_rates_objects: list[StratifiedRate] | None = None
    if stratified_rates:
        stratified_rates_objects = []
        for rate_dict in stratified_rates:
            conditions = [
                StratificationCondition(**cond) for cond in rate_dict["conditions"]
            ]
            stratified_rates_objects.append(
                StratifiedRate(conditions=conditions, rate=str(rate_dict["rate"]))
            )

    self._transitions.append(
        Transition(
            id=id,
            source=source,
            target=target,
            rate=rate,
            stratified_rates=stratified_rates_objects,
            condition=condition,
        )
    )
    logging.info(
        (
            f"Added transition: id='{id}', source={source}, target={target}, "
            f"rate='{rate}', stratified_rates={
                len(stratified_rates_objects) if stratified_rates_objects else 0
            }"
        )
    )
    return self

create_condition

create_condition(
    logic: Literal[AND, OR], rules: list[RuleDict]
) -> Condition

Create a condition object for use in transitions.

Parameters:

Name Type Description Default
logic Literal['and', 'or']

How to combine the rules.

required
rules List[RuleDict]

List of rule dictionaries with 'variable', 'operator', and 'value' keys. Each dictionary must have: - 'variable': str (format ':') - 'operator': Literal["eq", "neq", "gt", "get", "lt", "let"] - 'value': str | int | float | bool

required

Returns:

Type Description
Condition

The created condition object.

Examples:

>>> condition = builder.create_condition(
...     "and",
...     [
...         {"variable": "states:I", "operator": "gt", "value": 0},
...         {"variable": "strati:age", "operator": "eq", "value": "adult"},
...     ],
... )
Source code in epimodel/api/model_builder.py
def create_condition(
    self,
    logic: Literal[LogicOperators.AND, LogicOperators.OR],
    rules: list[RuleDict],
) -> Condition:
    """
    Create a condition object for use in transitions.

    Parameters
    ----------
    logic : Literal["and", "or"]
        How to combine the rules.
    rules : List[RuleDict]
        List of rule dictionaries with 'variable', 'operator', and 'value' keys.
        Each dictionary must have:
        - 'variable': str (format '<prefix>:<variable_id>')
        - 'operator': Literal["eq", "neq", "gt", "get", "lt", "let"]
        - 'value': str | int | float | bool

    Returns
    -------
    Condition
        The created condition object.

    Examples
    --------
    >>> condition = builder.create_condition(
    ...     "and",
    ...     [
    ...         {"variable": "states:I", "operator": "gt", "value": 0},
    ...         {"variable": "strati:age", "operator": "eq", "value": "adult"},
    ...     ],
    ... )
    """
    rule_objects: list[Rule] = []
    for rule_dict in rules:
        rule_objects.append(
            Rule(
                variable=rule_dict["variable"],
                operator=rule_dict["operator"],
                value=rule_dict["value"],
            )
        )

    return Condition(logic=logic, rules=rule_objects)

set_initial_conditions

set_initial_conditions(
    population_size: int,
    disease_state_fractions: list[DiseaseStateFractionDict],
    stratification_fractions: list[
        StratificationFractionsDict
    ]
    | None = None,
) -> Self

Set the initial conditions for the model.

Parameters:

Name Type Description Default
population_size int

Total population size.

required
disease_state_fractions list[DiseaseStateFractionDict]

List of disease state fractions. Each item is a dictionary with: - "disease_state": str (disease state id) - "fraction": float (fractional size)

Example: [ {"disease_state": "S", "fraction": 0.99}, {"disease_state": "I", "fraction": 0.01}, {"disease_state": "R", "fraction": 0.0} ]

required
stratification_fractions (list[StratificationFractionsDict] | None,)

default=None List of stratification fractions. Each item is a dictionary with: - "stratification": str (stratification id) - "fractions": list of dicts, each with "category" and "fraction"

Example: [ { "stratification": "age_group", "fractions": [ {"category": "young", "fraction": 0.3}, {"category": "adult", "fraction": 0.5}, {"category": "elderly", "fraction": 0.2} ] } ]

None

Returns:

Type Description
ModelBuilder

Self for method chaining.

Raises:

Type Description
ValueError

If initial conditions have already been set.

Source code in epimodel/api/model_builder.py
def set_initial_conditions(
    self,
    population_size: int,
    disease_state_fractions: list[DiseaseStateFractionDict],
    stratification_fractions: list[StratificationFractionsDict] | None = None,
) -> Self:
    """
    Set the initial conditions for the model.

    Parameters
    ----------
    population_size : int
        Total population size.
    disease_state_fractions : list[DiseaseStateFractionDict]
        List of disease state fractions. Each item is a dictionary with:
        - "disease_state": str (disease state id)
        - "fraction": float (fractional size)

        Example:
        [
            {"disease_state": "S", "fraction": 0.99},
            {"disease_state": "I", "fraction": 0.01},
            {"disease_state": "R", "fraction": 0.0}
        ]
    stratification_fractions : list[StratificationFractionsDict] | None,
        default=None
        List of stratification fractions. Each item is a dictionary with:
        - "stratification": str (stratification id)
        - "fractions": list of dicts, each with "category" and "fraction"

        Example:
        [
            {
                "stratification": "age_group",
                "fractions": [
                    {"category": "young", "fraction": 0.3},
                    {"category": "adult", "fraction": 0.5},
                    {"category": "elderly", "fraction": 0.2}
                ]
            }
        ]

    Returns
    -------
    ModelBuilder
        Self for method chaining.

    Raises
    ------
    ValueError
        If initial conditions have already been set.
    """
    if self._initial_conditions is not None:
        raise ValueError("Initial conditions have already been set")

    disease_state_fractions_list: list[DiseaseStateFraction] = []
    for ds_dict in disease_state_fractions:
        disease_state_fractions_list.append(
            DiseaseStateFraction(
                disease_state=ds_dict["disease_state"],
                fraction=ds_dict["fraction"],
            )
        )

    strat_fractions_list: list[StratificationFractions] = []
    if stratification_fractions:
        for strat_dict in stratification_fractions:
            fractions_list: list[StratificationFraction] = []
            for frac_dict in strat_dict["fractions"]:
                fractions_list.append(
                    StratificationFraction(
                        category=frac_dict["category"],
                        fraction=frac_dict["fraction"],
                    )
                )
            strat_fractions_list.append(
                StratificationFractions(
                    stratification=strat_dict["stratification"],
                    fractions=fractions_list,
                )
            )

    self._initial_conditions = InitialConditions(
        population_size=population_size,
        disease_state_fractions=disease_state_fractions_list,
        stratification_fractions=strat_fractions_list,
    )
    state_ids = [ds["disease_state"] for ds in disease_state_fractions]
    logging.info(
        (
            f"Set initial conditions: population_size={population_size}, "
            f"states={state_ids}"
        )
    )
    return self

get_summary

get_summary() -> dict[str, str | int | list[str] | None]

Get a summary of the current model builder state.

Returns:

Type Description
dict[str, dict[str, str | int | list[str] | None]]

Dictionary containing summary information about the model being built.

Source code in epimodel/api/model_builder.py
def get_summary(self) -> dict[str, str | int | list[str] | None]:
    """
    Get a summary of the current model builder state.

    Returns
    -------
    dict[str, dict[str, str | int | list[str] | None]]
        Dictionary containing summary information about the model being built.
    """
    return {
        "name": self._name,
        "description": self._description,
        "version": self._version,
        "disease_states_count": len(self._disease_states),
        "disease_state_ids": [state.id for state in self._disease_states],
        "stratifications_count": len(self._stratifications),
        "stratification_ids": [strat.id for strat in self._stratifications],
        "transitions_count": len(self._transitions),
        "transition_ids": [trans.id for trans in self._transitions],
        "parameters_count": len(self._parameters),
        "parameter_ids": [param.id for param in self._parameters],
        "has_initial_conditions": self._initial_conditions is not None,
    }

clone

clone() -> Self

Create a deep copy of this ModelBuilder.

Returns:

Type Description
ModelBuilder

A new ModelBuilder instance with the same configuration.

Source code in epimodel/api/model_builder.py
def clone(self) -> Self:
    """
    Create a deep copy of this ModelBuilder.

    Returns
    -------
    ModelBuilder
        A new ModelBuilder instance with the same configuration.
    """

    new_builder = type(self)(self._name, self._description, self._version)

    new_builder._disease_states = copy.deepcopy(self._disease_states)
    new_builder._stratifications = copy.deepcopy(self._stratifications)
    new_builder._transitions = copy.deepcopy(self._transitions)
    new_builder._parameters = copy.deepcopy(self._parameters)
    new_builder._initial_conditions = copy.deepcopy(self._initial_conditions)

    return new_builder

reset

reset() -> Self

Reset the builder to empty state while keeping name, description, and version.

Returns:

Type Description
ModelBuilder

Self for method chaining.

Source code in epimodel/api/model_builder.py
def reset(self) -> Self:
    """
    Reset the builder to empty state while keeping name, description, and version.

    Returns
    -------
    ModelBuilder
        Self for method chaining.
    """
    self._disease_states.clear()
    self._stratifications.clear()
    self._transitions.clear()
    self._parameters.clear()
    self._initial_conditions = None
    return self

build

build(typology: Literal[DIFFERENCE_EQUATIONS]) -> Model

Build and return the final Model instance.

Parameters:

Name Type Description Default
typology Literal['DifferenceEquations']

Type of the model.

required

Returns:

Type Description
Model

The constructed epidemiological model.

Raises:

Type Description
ValueError

If validation fails or required components are missing.

Source code in epimodel/api/model_builder.py
def build(self, typology: Literal[ModelTypes.DIFFERENCE_EQUATIONS]) -> Model:
    """
    Build and return the final Model instance.

    Parameters
    ----------
    typology : Literal["DifferenceEquations"]
        Type of the model.

    Returns
    -------
    Model
        The constructed epidemiological model.

    Raises
    ------
    ValueError
        If validation fails or required components are missing.
    """
    if self._initial_conditions is None:
        raise ValueError("Initial conditions must be set")

    population = Population(
        disease_states=self._disease_states,
        stratifications=self._stratifications,
        transitions=self._transitions,
        initial_conditions=self._initial_conditions,
    )

    dynamics = Dynamics(typology=typology, transitions=self._transitions)

    model = Model(
        name=self._name,
        description=self._description,
        version=self._version,
        population=population,
        parameters=self._parameters,
        dynamics=dynamics,
    )

    logging.info(
        f"Model '{self._name}' successfully built with typology '{typology}'."
    )

    return model

options: show_root_heading: true show_source: true heading_level: 2 show_docstring_attributes: false