Skip to content

Model Structure (Advanced)

For Advanced Users

This section documents the internal structure of the Model class and its components.

**Most users don't need this** - use `ModelBuilder` instead to create models.

This is useful for:
- Understanding the internal model representation
- Working with `ModelLoader.from_json()`
- Contributing to the library
- Debugging complex models

Model

Model

Bases: BaseModel

Root class of compartment model.

Attributes:

Name Type Description
name str

A unique name that identifies the model.

description str | None

A human-readable description of the model's purpose and function.

version str | None

The version number of the model.

population Population

Population details, subpopulations, stratifications and initial conditions.

parameters list[Parameter]

A list of global model parameters.

dynamics Dynamics

The rules that govern system evolution.

Source code in commol/context/model.py
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
class Model(BaseModel):
    """
    Root class of compartment model.

    Attributes
    ----------
    name : str
        A unique name that identifies the model.
    description : str | None
        A human-readable description of the model's purpose and function.
    version : str | None
        The version number of the model.
    population : Population
        Population details, subpopulations, stratifications and initial conditions.
    parameters : list[Parameter]
        A list of global model parameters.
    dynamics : Dynamics
        The rules that govern system evolution.
    """

    name: str = Field(..., description="Name which identifies the model.")
    description: str | None = Field(
        None,
        description="Human-readable description of the model's purpose and function.",
    )
    version: str | None = Field(None, description="Version number of the model.")

    population: Population
    parameters: list[Parameter]
    dynamics: Dynamics

    @model_validator(mode="after")
    def validate_unique_parameter_ids(self) -> Self:
        """
        Validates that parameter IDs are unique.
        """
        parameter_ids = [p.id for p in self.parameters]
        if len(parameter_ids) != len(set(parameter_ids)):
            duplicates = [
                item for item in set(parameter_ids) if parameter_ids.count(item) > 1
            ]
            raise ValueError(f"Duplicate parameter IDs found: {duplicates}")
        return self

    @model_validator(mode="after")
    def validate_formula_variables(self) -> Self:
        """
        Validate that all variables in rate expressions are defined.
        This is done by gathering all valid identifiers and checking each
        transition's rate expressions against them.
        """
        valid_identifiers = self._get_valid_identifiers()

        for transition in self.dynamics.transitions:
            self._validate_transition_rates(transition, valid_identifiers)
        return self

    def _get_valid_identifiers(self) -> set[str]:
        """Gathers all valid identifiers for use in rate expressions."""
        special_vars = {"N", "step", "pi", "e", "t"}
        param_ids = {param.id for param in self.parameters}
        bin_ids = {bin_item.id for bin_item in self.population.bins}

        strat_category_ids: set[str] = {
            cat for strat in self.population.stratifications for cat in strat.categories
        }

        subpopulation_n_vars = self._get_subpopulation_n_vars()

        return (
            param_ids
            | bin_ids
            | strat_category_ids
            | special_vars
            | subpopulation_n_vars
        )

    def _get_subpopulation_n_vars(self) -> set[str]:
        """Generates all possible N_{category...} variable names."""
        if not self.population.stratifications:
            return set()

        subpopulation_n_vars: set[str] = set()
        category_groups = [s.categories for s in self.population.stratifications]

        # All possible combinations of categories across different stratifications
        full_category_combos = product(*category_groups)

        for combo_tuple in full_category_combos:
            # For each combo, find all non-empty subsets
            for i in range(1, len(combo_tuple) + 1):
                for subset in combinations(combo_tuple, i):
                    var_name = f"N_{'_'.join(subset)}"
                    subpopulation_n_vars.add(var_name)

        return subpopulation_n_vars

    def _validate_transition_rates(
        self, transition: Transition, valid_identifiers: set[str]
    ) -> None:
        """Validates the rate expressions for a single transition."""
        if transition.rate:
            self._validate_rate_expression(
                transition.rate, transition.id, "rate", valid_identifiers
            )

        if transition.stratified_rates:
            for sr in transition.stratified_rates:
                self._validate_rate_expression(
                    sr.rate, transition.id, "stratified_rate", valid_identifiers
                )

    def _validate_rate_expression(
        self, rate: str, transition_id: str, context: str, valid_identifiers: set[str]
    ) -> None:
        """Validates variables in a single rate expression."""
        variables = get_expression_variables(rate)
        undefined_vars = [var for var in variables if var not in valid_identifiers]
        if undefined_vars:
            param_ids = {param.id for param in self.parameters}
            bin_ids = {bin_item.id for bin_item in self.population.bins}
            raise ValueError(
                (
                    f"Undefined variables in transition '{transition_id}' "
                    f"{context} '{rate}': {', '.join(undefined_vars)}. "
                    f"Available parameters: "
                    f"{', '.join(sorted(param_ids)) if param_ids else 'none'}. "
                    f"Available bins: "
                    f"{', '.join(sorted(bin_ids)) if bin_ids else 'none'}."
                )
            )

    @model_validator(mode="after")
    def validate_transition_ids(self) -> Self:
        """
        Validates that transition ids (source/target) are consistent in type
        and match the defined Bin IDs or Stratification Categories
        in the Population instance.
        """

        bin_ids = {bin_item.id for bin_item in self.population.bins}
        categories_ids = {
            cat for strat in self.population.stratifications for cat in strat.categories
        }
        bin_and_categories_ids = bin_ids.union(categories_ids)

        for transition in self.dynamics.transitions:
            source = set(transition.source)
            target = set(transition.target)
            transition_ids = source.union(target)

            if not transition_ids.issubset(bin_and_categories_ids):
                invalid_ids = transition_ids - bin_and_categories_ids
                raise ValueError(
                    (
                        f"Transition '{transition.id}' contains invalid ids: "
                        f"{invalid_ids}. Ids must be defined in Bin ids "
                        f"or Stratification Categories."
                    )
                )

            is_bin_flow = transition_ids.issubset(bin_ids)
            is_stratification_flow = transition_ids.issubset(categories_ids)

            if (not is_bin_flow) and (not is_stratification_flow):
                bin_elements = transition_ids.intersection(bin_ids)
                categories_elements = transition_ids.intersection(categories_ids)
                raise ValueError(
                    (
                        f"Transition '{transition.id}' mixes id types. "
                        f"Found Bin ids ({bin_elements}) and "
                        f"Stratification Categories ids ({categories_elements}). "
                        "Transitions must be purely Bin flow or purely "
                        f"Stratification flow."
                    )
                )

            if is_stratification_flow:
                category_to_stratification_map = {
                    cat: strat.id
                    for strat in self.population.stratifications
                    for cat in strat.categories
                }
                parent_stratification_ids = {
                    category_to_stratification_map[cat_id] for cat_id in transition_ids
                }
                if len(parent_stratification_ids) > 1:
                    mixed_strats = ", ".join(parent_stratification_ids)
                    raise ValueError(
                        (
                            f"Transition '{transition.id}' is a Stratification flow "
                            f"but involves categories from multiple stratifications: "
                            f"{mixed_strats}. A single transition must only move "
                            f"between categories belonging to the same parent "
                            f"stratification."
                        )
                    )

        return self

    def print_equations(self, output_file: str | None = None) -> None:
        """
        Prints the difference equations of the model in mathematical form.

        Displays model metadata and the system of difference equations in both
        compact (mathematical notation) and expanded (individual equations) forms.

        Parameters
        ----------
        output_file : str | None
            If provided, writes the equations to this file path instead of printing
            to console. If None, prints to console.

        Raises
        ------
        ValueError
            If the model is not a DifferenceEquations model.
        """

        if self.dynamics.typology != ModelTypes.DIFFERENCE_EQUATIONS:
            raise ValueError(
                (
                    f"print_equations only supports DifferenceEquations models. "
                    f"Current model type: {self.dynamics.typology}"
                )
            )

        lines = self._generate_model_header()

        # Always generate both compact and expanded forms
        lines.extend(self._generate_compact_form())
        lines.append("")
        lines.extend(self._generate_expanded_form())

        output = "\n".join(lines)
        self._write_output(output, output_file)

    def _generate_model_header(self) -> list[str]:
        """Generate the header lines with model metadata."""
        lines: list[str] = []
        lines.append("=" * 40)
        lines.append("MODEL INFORMATION")
        lines.append("=" * 40)
        lines.append(f"Model: {self.name}")
        lines.append(f"Model Type: {self.dynamics.typology}")
        lines.append(f"Number of Bins: {len(self.population.bins)}")
        lines.append(
            f"Number of Stratifications: {len(self.population.stratifications)}"
        )
        lines.append(f"Number of Parameters: {len(self.parameters)}")
        lines.append(f"Number of Transitions: {len(self.dynamics.transitions)}")

        # List bins
        bin_ids = [bin_item.id for bin_item in self.population.bins]
        lines.append(f"Bins: {', '.join(bin_ids)}")

        # List stratifications
        if self.population.stratifications:
            lines.append("Stratifications:")
            for strat in self.population.stratifications:
                categories = ", ".join(strat.categories)
                lines.append(f"  - {strat.id}: [{categories}]")

        lines.append("")
        return lines

    def _collect_bin_and_category_ids(self) -> set[str]:
        """Collect all IDs from bins and stratification categories."""
        all_ids = {bin_item.id for bin_item in self.population.bins}
        for strat in self.population.stratifications:
            all_ids.update(strat.categories)
        return all_ids

    def _build_flow_equations(
        self, bin_and_category_ids: set[str]
    ) -> dict[str, dict[str, list[str]]]:
        """Build a mapping of bins and categories to their inflows and outflows."""
        equations: dict[str, dict[str, list[str]]] = {
            id_: {"inflows": [], "outflows": []} for id_ in bin_and_category_ids
        }
        for transition in self.dynamics.transitions:
            rate = transition.rate if transition.rate else ""
            source_counts = {
                state: transition.source.count(state)
                for state in set(transition.source)
            }
            target_counts = {
                state: transition.target.count(state)
                for state in set(transition.target)
            }
            all_states = set(transition.source) | set(transition.target)
            for state in all_states:
                net_change = target_counts.get(state, 0) - source_counts.get(state, 0)
                if net_change > 0:
                    equations[state]["inflows"].append(rate)
                elif net_change < 0:
                    equations[state]["outflows"].append(rate)

        return equations

    def _format_bin_equation(self, flows: dict[str, list[str]]) -> str:
        """Format the equation for a single bin or category from its flows."""
        terms: list[str] = []

        for inflow in flows["inflows"]:
            if inflow:  # Only add if not empty
                terms.append(f"+ ({inflow})")

        for outflow in flows["outflows"]:
            if outflow:  # Only add if not empty
                terms.append(f"- ({outflow})")

        if not terms:
            return "0"

        result = " ".join(terms)
        # Remove leading + sign and space if present
        if result.startswith("+ "):
            result = result[2:]
        return result

    def _generate_compact_form(self) -> list[str]:
        """Generate compact mathematical notation form for stratified models."""
        lines: list[str] = []
        lines.append("=" * 40)
        lines.append("COMPACT FORM")
        lines.append("=" * 40)
        lines.append("")

        bin_ids = [bin_item.id for bin_item in self.population.bins]
        bin_transitions, stratification_transitions = (
            self._separate_transitions_by_type()
        )

        compartments = self._generate_compartments()

        lines.extend(
            self._format_bin_transitions_compact_stratified(
                bin_transitions, compartments
            )
        )
        lines.extend(
            self._format_stratification_transitions_compact_stratified(
                stratification_transitions, bin_ids
            )
        )
        lines.extend(self._format_total_system_size(bin_ids))

        return lines

    def _generate_compartments(self) -> list[tuple[str, ...]]:
        """
        Generate all compartment combinations from bins and stratifications.
        """
        bin_ids = [state.id for state in self.population.bins]

        if not self.population.stratifications:
            return [(state,) for state in bin_ids]

        strat_categories = [
            strat.categories for strat in self.population.stratifications
        ]

        compartments: list[tuple[str, ...]] = []
        for bin_id in bin_ids:
            for strat_combo in product(*strat_categories):
                compartments.append((bin_id,) + strat_combo)

        return compartments

    def _compartment_to_string(self, compartment: tuple[str, ...]) -> str:
        """Convert compartment tuple to string like 'S_young_urban'."""
        return "_".join(compartment)

    def _get_rate_for_compartment(
        self, transition: Transition, compartment: tuple[str, ...]
    ) -> str | None:
        """Get the appropriate rate for a compartment, considering stratified rates."""
        if not transition.stratified_rates or len(compartment) == 1:
            return transition.rate

        compartment_strat_map: dict[str, str] = {}
        for i, strat in enumerate(self.population.stratifications):
            compartment_strat_map[strat.id] = compartment[i + 1]

        for strat_rate in transition.stratified_rates:
            matches = True
            for condition in strat_rate.conditions:
                if (
                    compartment_strat_map.get(condition.stratification)
                    != condition.category
                ):
                    matches = False
                    break
            if matches:
                return strat_rate.rate

        # No stratified rate matched, use fallback
        return transition.rate

    def _separate_transitions_by_type(
        self,
    ) -> tuple[list[Transition], list[Transition]]:
        """Separate transitions into bin and stratification types."""
        bin_ids = [bin_item.id for bin_item in self.population.bins]
        bin_id_set = set(bin_ids)

        bin_transitions: list[Transition] = []
        stratification_transitions: list[Transition] = []

        for transition in self.dynamics.transitions:
            transition_ids = set(transition.source) | set(transition.target)
            if transition_ids.issubset(bin_id_set):
                bin_transitions.append(transition)
            else:
                stratification_transitions.append(transition)

        return bin_transitions, stratification_transitions

    def _format_stratification_transitions_compact(
        self, bin_ids: list[str], stratification_transitions: list[Transition]
    ) -> list[str]:
        """Format stratification transitions in compact form."""
        lines: list[str] = []
        strat_by_id = self._group_transitions_by_stratification(
            stratification_transitions
        )

        for strat in self.population.stratifications:
            if strat_by_id[strat.id]:
                lines.append(f"Stratification Transitions ({strat.id}):")
                disease_states_str = ", ".join(bin_ids)
                lines.append(f"For each bin X in {{{disease_states_str}}}:")

                for category in strat.categories:
                    equation = self._build_category_equation(
                        category, strat_by_id[strat.id]
                    )
                    if equation:
                        lines.append(f"  dX_{category}/dt: {equation}")

                lines.append("")

        return lines

    def _group_transitions_by_stratification(
        self, transitions: list[Transition]
    ) -> dict[str, list[Transition]]:
        """Group stratification transitions by their stratification ID."""
        strat_by_id: dict[str, list[Transition]] = {}
        for strat in self.population.stratifications:
            strat_by_id[strat.id] = []
            for transition in transitions:
                transition_states = set(transition.source) | set(transition.target)
                if transition_states.issubset(set(strat.categories)):
                    strat_by_id[strat.id].append(transition)
        return strat_by_id

    def _build_category_equation(
        self, category: str, transitions: list[Transition]
    ) -> str:
        """Build equation for a stratification category."""
        inflows: list[str] = []
        outflows: list[str] = []

        for transition in transitions:
            if not transition.rate:
                continue

            source_count = transition.source.count(category)
            target_count = transition.target.count(category)
            net_change = target_count - source_count

            if net_change > 0:
                inflows.append(f"+ ({transition.rate} * X)")
            elif net_change < 0:
                outflows.append(f"- ({transition.rate} * X)")

        terms = inflows + outflows
        if not terms:
            return ""

        result = " ".join(terms)
        # Remove leading + sign if present
        if result.startswith("+"):
            result = result[1:]
        return result

    def _format_bin_transitions_compact(
        self, bin_ids: list[str], bin_transitions: list[Transition]
    ) -> list[str]:
        """Format bin transitions in compact form."""
        lines: list[str] = []

        if not bin_transitions:
            return lines

        lines.append("Bin Transitions:")

        if self.population.stratifications:
            all_categories = [
                cat
                for strat in self.population.stratifications
                for cat in strat.categories
            ]
            categories_str = ", ".join(all_categories)
            lines.append(f"For each stratification s in {{{categories_str}}}:")

        for bin_id in bin_ids:
            equation = self._build_bin_equation_from_transitions(
                bin_id, bin_transitions
            )
            if equation:
                suffix = "_s" if self.population.stratifications else ""
                lines.append(f"  d{bin_id}{suffix}/dt: {equation}")

        lines.append("")
        return lines

    def _build_bin_equation_from_transitions(
        self, bin_id: str, transitions: list[Transition]
    ) -> str:
        """Build equation for a bin."""
        inflows: list[str] = []
        outflows: list[str] = []

        for transition in transitions:
            if not transition.rate:
                continue

            source_count = transition.source.count(bin_id)
            target_count = transition.target.count(bin_id)
            net_change = target_count - source_count

            if net_change > 0:
                inflows.append(f"+ ({transition.rate})")
            elif net_change < 0:
                outflows.append(f"- ({transition.rate})")

        terms = inflows + outflows
        if not terms:
            return ""

        result = " ".join(terms)
        # Remove leading + sign if present
        if result.startswith("+"):
            result = result[1:]
        return result

    def _format_total_system_size(self, bin_ids: list[str]) -> list[str]:
        """Format the total system size information."""
        lines: list[str] = []

        num_disease_states = len(bin_ids)
        if not self.population.stratifications:
            total_equations = num_disease_states
            lines.append(
                (
                    f"Total System: {total_equations} coupled equations "
                    f"({num_disease_states} bins)"
                )
            )
            return lines

        num_strat_combinations = 1
        strat_details: list[str] = []
        for strat in self.population.stratifications:
            num_cat = len(strat.categories)
            num_strat_combinations *= num_cat
            strat_details.append(f"{num_cat} {strat.id}")

        total_equations = num_disease_states * num_strat_combinations

        lines.append(
            (
                f"Total System: {total_equations} coupled equations "
                f"({num_disease_states} bins × {' × '.join(strat_details)})"
            )
        )

        return lines

    def _format_bin_transitions_compact_stratified(
        self, bin_transitions: list[Transition], compartments: list[tuple[str, ...]]
    ) -> list[str]:
        """Format bin transitions showing specific compartments and rates."""
        lines: list[str] = []

        if not bin_transitions:
            return lines

        lines.append("Bin Transitions:")

        for transition in bin_transitions:
            source_bins = transition.source
            target_bins = transition.target

            source_str = ", ".join(sorted(set(source_bins))) if source_bins else "none"
            target_str = ", ".join(sorted(set(target_bins))) if target_bins else "none"
            lines.append(
                f"{transition.id.capitalize()} ({source_str} -> {target_str}):"
            )

            for compartment in compartments:
                bin_id = compartment[0]

                if bin_id in source_bins:
                    source_compartment_str = self._compartment_to_string(compartment)

                    if target_bins:
                        target_bin = target_bins[0]
                        target_compartment_str = source_compartment_str.replace(
                            bin_id, target_bin, 1
                        )
                    else:
                        target_compartment_str = "none"

                    rate = self._get_rate_for_compartment(transition, compartment)

                    lines.append(
                        (
                            f"  {source_compartment_str} -> "
                            f"{target_compartment_str}: {rate}"
                        )
                    )

            lines.append("")

        return lines

    def _build_stratified_for_each_line(
        self, bin_ids: list[str], other_strats: list["Stratification"]
    ) -> str:
        if other_strats:
            other_strats_strs = [
                f"each {s.id} in {{{', '.join(s.categories)}}}" for s in other_strats
            ]
            return (
                f"For each bin X in {{{', '.join(bin_ids)}}} "
                f"and {', '.join(other_strats_strs)}:"
            )
        return f"For each bin X in {{{', '.join(bin_ids)}}}:"

    def _build_stratified_transition_line(
        self,
        trans: Transition,
        strat_idx: int,
        combo: tuple[str, ...],
    ) -> str:
        src_cat = trans.source[0]
        tgt_cat = trans.target[0]

        source_parts = [""] * len(self.population.stratifications)
        target_parts = [""] * len(self.population.stratifications)
        source_parts[strat_idx] = src_cat
        target_parts[strat_idx] = tgt_cat

        combo_idx = 0
        for i in range(len(self.population.stratifications)):
            if i != strat_idx:
                source_parts[i] = combo[combo_idx]
                target_parts[i] = combo[combo_idx]
                combo_idx += 1

        source_comp = f"X_{'_'.join(source_parts)}"
        target_comp = f"X_{'_'.join(target_parts)}"

        sample_compartment = ("X",) + tuple(source_parts)
        rate = self._get_rate_for_compartment(trans, sample_compartment)
        rate_expr = (
            f"{rate} * {source_comp}" if rate else f"{trans.rate} * {source_comp}"
        )

        return f"  {source_comp} -> {target_comp}: {rate_expr}"

    def _format_stratification_transitions_compact_stratified(
        self,
        stratification_transitions: list[Transition],
        bin_ids: list[str],
    ) -> list[str]:
        """Format stratification transitions showing movements between categories."""
        lines: list[str] = []
        strat_by_id = self._group_transitions_by_stratification(
            stratification_transitions
        )

        for strat_idx, strat in enumerate(self.population.stratifications):
            if not strat_by_id.get(strat.id):
                continue

            transition = strat_by_id[strat.id][0]
            source_cat = transition.source[0] if transition.source else "none"
            target_cat = transition.target[0] if transition.target else "none"

            if not source_cat or not target_cat:
                continue

            lines.append(
                (
                    f"{strat.id.capitalize()} Stratification Transitions "
                    f"({source_cat} -> {target_cat}):"
                )
            )

            other_strats = [
                s
                for i, s in enumerate(self.population.stratifications)
                if i != strat_idx
            ]

            lines.append(self._build_stratified_for_each_line(bin_ids, other_strats))

            for trans in strat_by_id[strat.id]:
                other_cat_combos = (
                    list(product(*[s.categories for s in other_strats]))
                    if other_strats
                    else [()]
                )

                for combo in other_cat_combos:
                    lines.append(
                        self._build_stratified_transition_line(trans, strat_idx, combo)
                    )

            lines.append("")

        return lines

    def _generate_expanded_form(self) -> list[str]:
        """Generate expanded form with individual equations for each compartment."""
        lines: list[str] = []

        lines.append("=" * 40)
        lines.append("EXPANDED FORM")
        lines.append("=" * 40)

        has_stratifications = len(self.population.stratifications) > 0

        if has_stratifications:
            compartments = self._generate_compartments()
            bin_transitions, stratification_transitions = (
                self._separate_transitions_by_type()
            )

            for compartment in compartments:
                compartment_str = self._compartment_to_string(compartment)
                equation = self._build_compartment_equation(
                    compartment, bin_transitions, stratification_transitions
                )
                lines.append(f"d{compartment_str}/dt = {equation}")
        else:
            bin_and_category_ids = self._collect_bin_and_category_ids()
            equations = self._build_flow_equations(bin_and_category_ids)
            bin_ids = [bin_item.id for bin_item in self.population.bins]

            for bin_id in bin_ids:
                equation = self._format_bin_equation(equations[bin_id])
                lines.append(f"d{bin_id}/dt = {equation}")

        return lines

    def _build_compartment_equation(
        self,
        compartment: tuple[str, ...],
        bin_transitions: list[Transition],
        stratification_transitions: list[Transition],
    ) -> str:
        """Build the complete equation for a specific compartment."""
        terms: list[str] = []
        bin_id = compartment[0]

        for transition in bin_transitions:
            source_count = transition.source.count(bin_id)
            target_count = transition.target.count(bin_id)
            net_change = target_count - source_count

            if net_change != 0:
                rate = self._get_rate_for_compartment(transition, compartment)
                if rate:
                    if net_change > 0:
                        terms.append(f"+ ({rate})")
                    else:
                        terms.append(f"- ({rate})")

        for transition in stratification_transitions:
            flow_term = self._get_stratification_flow_for_compartment(
                compartment, transition
            )
            if flow_term:
                terms.append(flow_term)

        if not terms:
            return "0"

        equation = " ".join(terms)
        if equation.startswith("+ "):
            return equation[2:]
        if equation.startswith("+"):
            return equation[1:]
        return equation

    def _get_stratification_flow_for_compartment(
        self, compartment: tuple[str, ...], transition: Transition
    ) -> str | None:
        """Calculate stratification flow term for a compartment."""
        if len(compartment) == 1:
            return None

        transition_states = set(transition.source) | set(transition.target)
        target_strat_idx = None

        for i, strat in enumerate(self.population.stratifications):
            if transition_states.issubset(set(strat.categories)):
                target_strat_idx = i
                break

        if target_strat_idx is None:
            return None

        compartment_category = compartment[target_strat_idx + 1]
        source_categories = transition.source
        target_categories = transition.target

        source_count = source_categories.count(compartment_category)
        target_count = target_categories.count(compartment_category)
        net_change = target_count - source_count

        if net_change == 0:
            return None

        rate = self._get_rate_for_compartment(transition, compartment)
        if not rate:
            return None

        if net_change < 0:
            compartment_str = self._compartment_to_string(compartment)
            return f"- ({rate} * {compartment_str})"
        else:
            source_category = source_categories[0] if source_categories else None
            if source_category:
                source_compartment = list(compartment)
                source_compartment[target_strat_idx + 1] = source_category
                source_compartment_str = self._compartment_to_string(
                    tuple(source_compartment)
                )
                return f"+ ({rate} * {source_compartment_str})"

        return None

    def _write_output(self, output: str, output_file: str | None) -> None:
        """Write output to file or console."""
        if output_file:
            with open(output_file, "w") as f:
                _ = f.write(output)
        else:
            print(output)

    def check_unit_consistency(self) -> None:
        """
        Check unit consistency of all equations in the model.

        This method validates that all transition rates have consistent units.
        It only performs the check if ALL parameters have units specified.
        If any parameter lacks a unit, the check is skipped.

        For difference equation models, all rates should have units that result in
        population change rates (e.g., "person/day" or "1/day" when multiplied by
        population).

        Raises
        ------
        UnitConsistencyError
            If unit inconsistencies are found in any equation.
        ValueError
            If the model type doesn't support unit checking.

        Examples
        --------
        >>> model.check_unit_consistency()  # Raises exception if inconsistent

        Notes
        -----
        - Bin variables are assumed to have units of "person"
        - Predefined variables (N, N_young, etc.) have units of "person"
        - Time step variables (t, step) are dimensionless
        - Mathematical constants (pi, e) are dimensionless
        """
        # Check if all parameters have units
        if not check_all_parameters_have_units(self.parameters):
            # Skip check if not all parameters have units
            return

        if self.dynamics.typology != ModelTypes.DIFFERENCE_EQUATIONS:
            raise ValueError(
                f"Unit checking is only supported for DifferenceEquations models. "
                f"Current model type: {self.dynamics.typology}"
            )

        # Build variable units mapping
        variable_units = self._build_variable_units()

        # Check each transition
        errors: list[str] = []
        for transition in self.dynamics.transitions:
            # Check main rate
            if transition.rate:
                is_consistent, error_msg = self._check_transition_rate_units(
                    transition.rate,
                    transition.id,
                    variable_units,
                    transition.source,
                )
                if not is_consistent and error_msg:
                    errors.append(error_msg)

            # Check stratified rates
            if transition.stratified_rates:
                for idx, strat_rate in enumerate(transition.stratified_rates):
                    is_consistent, error_msg = self._check_transition_rate_units(
                        strat_rate.rate,
                        f"{transition.id} (stratified rate {idx + 1})",
                        variable_units,
                        transition.source,
                    )
                    if not is_consistent and error_msg:
                        errors.append(error_msg)

        if errors:
            error_message = "Unit consistency check failed:\n" + "\n".join(
                f"  - {err}" for err in errors
            )
            raise UnitConsistencyError(error_message)

    def _build_variable_units(self) -> dict[str, str]:
        """Build a mapping of all variables to their units."""
        variable_units: dict[str, str] = {}

        # Add parameter units
        for param in self.parameters:
            if param.unit:
                variable_units[param.id] = param.unit

        # Add bin units (all are "person")
        for state in self.population.bins:
            variable_units[state.id] = "person"

        # Add stratification category units (all are "person" for population counts)
        for strat in self.population.stratifications:
            for category in strat.categories:
                variable_units[category] = "person"

        # Add predefined variable units (N, N_young, etc.)
        predefined_units = get_predefined_variable_units(
            self.population.stratifications
        )
        variable_units.update(predefined_units)

        # Add dimensionless special variables
        variable_units["step"] = "dimensionless"
        variable_units["t"] = "dimensionless"
        variable_units["pi"] = "dimensionless"
        variable_units["e"] = "dimensionless"

        return variable_units

    def _check_transition_rate_units(
        self,
        rate: str,
        transition_id: str,
        variable_units: dict[str, str],
        source_states: list[str],
    ) -> tuple[bool, str | None]:
        """
        Check units for a single transition rate.

        For transitions in difference equations, rates represent the absolute change
        in population per time step, so they should have units of "person/day"
        (or person/timestep).
        """
        # Get variables used in the rate expression
        variables = get_expression_variables(rate)

        # Build variable units for this specific rate
        rate_variable_units = {}
        for var in variables:
            if var in variable_units:
                rate_variable_units[var] = variable_units[var]
            else:
                # Variable not found
                # This should have been caught by earlier validation
                return (
                    False,
                    f"Transition '{transition_id}': Variable '{var}' in rate "
                    f"'{rate}' has no defined unit",
                )

        # For difference equations, rates should result in person per time unit
        # This represents the absolute change in population per time step
        expected_unit = "person/day"

        # Check unit consistency
        is_consistent, error_msg = check_equation_units(
            rate, rate_variable_units, expected_unit
        )

        if not is_consistent:
            return (
                False,
                f"Transition '{transition_id}': {error_msg}",
            )

        return (True, None)

Functions

validate_unique_parameter_ids

validate_unique_parameter_ids() -> Self

Validates that parameter IDs are unique.

Source code in commol/context/model.py
@model_validator(mode="after")
def validate_unique_parameter_ids(self) -> Self:
    """
    Validates that parameter IDs are unique.
    """
    parameter_ids = [p.id for p in self.parameters]
    if len(parameter_ids) != len(set(parameter_ids)):
        duplicates = [
            item for item in set(parameter_ids) if parameter_ids.count(item) > 1
        ]
        raise ValueError(f"Duplicate parameter IDs found: {duplicates}")
    return self

validate_formula_variables

validate_formula_variables() -> Self

Validate that all variables in rate expressions are defined. This is done by gathering all valid identifiers and checking each transition's rate expressions against them.

Source code in commol/context/model.py
@model_validator(mode="after")
def validate_formula_variables(self) -> Self:
    """
    Validate that all variables in rate expressions are defined.
    This is done by gathering all valid identifiers and checking each
    transition's rate expressions against them.
    """
    valid_identifiers = self._get_valid_identifiers()

    for transition in self.dynamics.transitions:
        self._validate_transition_rates(transition, valid_identifiers)
    return self

validate_transition_ids

validate_transition_ids() -> Self

Validates that transition ids (source/target) are consistent in type and match the defined Bin IDs or Stratification Categories in the Population instance.

Source code in commol/context/model.py
@model_validator(mode="after")
def validate_transition_ids(self) -> Self:
    """
    Validates that transition ids (source/target) are consistent in type
    and match the defined Bin IDs or Stratification Categories
    in the Population instance.
    """

    bin_ids = {bin_item.id for bin_item in self.population.bins}
    categories_ids = {
        cat for strat in self.population.stratifications for cat in strat.categories
    }
    bin_and_categories_ids = bin_ids.union(categories_ids)

    for transition in self.dynamics.transitions:
        source = set(transition.source)
        target = set(transition.target)
        transition_ids = source.union(target)

        if not transition_ids.issubset(bin_and_categories_ids):
            invalid_ids = transition_ids - bin_and_categories_ids
            raise ValueError(
                (
                    f"Transition '{transition.id}' contains invalid ids: "
                    f"{invalid_ids}. Ids must be defined in Bin ids "
                    f"or Stratification Categories."
                )
            )

        is_bin_flow = transition_ids.issubset(bin_ids)
        is_stratification_flow = transition_ids.issubset(categories_ids)

        if (not is_bin_flow) and (not is_stratification_flow):
            bin_elements = transition_ids.intersection(bin_ids)
            categories_elements = transition_ids.intersection(categories_ids)
            raise ValueError(
                (
                    f"Transition '{transition.id}' mixes id types. "
                    f"Found Bin ids ({bin_elements}) and "
                    f"Stratification Categories ids ({categories_elements}). "
                    "Transitions must be purely Bin flow or purely "
                    f"Stratification flow."
                )
            )

        if is_stratification_flow:
            category_to_stratification_map = {
                cat: strat.id
                for strat in self.population.stratifications
                for cat in strat.categories
            }
            parent_stratification_ids = {
                category_to_stratification_map[cat_id] for cat_id in transition_ids
            }
            if len(parent_stratification_ids) > 1:
                mixed_strats = ", ".join(parent_stratification_ids)
                raise ValueError(
                    (
                        f"Transition '{transition.id}' is a Stratification flow "
                        f"but involves categories from multiple stratifications: "
                        f"{mixed_strats}. A single transition must only move "
                        f"between categories belonging to the same parent "
                        f"stratification."
                    )
                )

    return self

print_equations

print_equations(output_file: str | None = None) -> None

Prints the difference equations of the model in mathematical form.

Displays model metadata and the system of difference equations in both compact (mathematical notation) and expanded (individual equations) forms.

Parameters:

Name Type Description Default
output_file str | None

If provided, writes the equations to this file path instead of printing to console. If None, prints to console.

None

Raises:

Type Description
ValueError

If the model is not a DifferenceEquations model.

Source code in commol/context/model.py
def print_equations(self, output_file: str | None = None) -> None:
    """
    Prints the difference equations of the model in mathematical form.

    Displays model metadata and the system of difference equations in both
    compact (mathematical notation) and expanded (individual equations) forms.

    Parameters
    ----------
    output_file : str | None
        If provided, writes the equations to this file path instead of printing
        to console. If None, prints to console.

    Raises
    ------
    ValueError
        If the model is not a DifferenceEquations model.
    """

    if self.dynamics.typology != ModelTypes.DIFFERENCE_EQUATIONS:
        raise ValueError(
            (
                f"print_equations only supports DifferenceEquations models. "
                f"Current model type: {self.dynamics.typology}"
            )
        )

    lines = self._generate_model_header()

    # Always generate both compact and expanded forms
    lines.extend(self._generate_compact_form())
    lines.append("")
    lines.extend(self._generate_expanded_form())

    output = "\n".join(lines)
    self._write_output(output, output_file)

check_unit_consistency

check_unit_consistency() -> None

Check unit consistency of all equations in the model.

This method validates that all transition rates have consistent units. It only performs the check if ALL parameters have units specified. If any parameter lacks a unit, the check is skipped.

For difference equation models, all rates should have units that result in population change rates (e.g., "person/day" or "1/day" when multiplied by population).

Raises:

Type Description
UnitConsistencyError

If unit inconsistencies are found in any equation.

ValueError

If the model type doesn't support unit checking.

Examples:

>>> model.check_unit_consistency()  # Raises exception if inconsistent
Notes
  • Bin variables are assumed to have units of "person"
  • Predefined variables (N, N_young, etc.) have units of "person"
  • Time step variables (t, step) are dimensionless
  • Mathematical constants (pi, e) are dimensionless
Source code in commol/context/model.py
def check_unit_consistency(self) -> None:
    """
    Check unit consistency of all equations in the model.

    This method validates that all transition rates have consistent units.
    It only performs the check if ALL parameters have units specified.
    If any parameter lacks a unit, the check is skipped.

    For difference equation models, all rates should have units that result in
    population change rates (e.g., "person/day" or "1/day" when multiplied by
    population).

    Raises
    ------
    UnitConsistencyError
        If unit inconsistencies are found in any equation.
    ValueError
        If the model type doesn't support unit checking.

    Examples
    --------
    >>> model.check_unit_consistency()  # Raises exception if inconsistent

    Notes
    -----
    - Bin variables are assumed to have units of "person"
    - Predefined variables (N, N_young, etc.) have units of "person"
    - Time step variables (t, step) are dimensionless
    - Mathematical constants (pi, e) are dimensionless
    """
    # Check if all parameters have units
    if not check_all_parameters_have_units(self.parameters):
        # Skip check if not all parameters have units
        return

    if self.dynamics.typology != ModelTypes.DIFFERENCE_EQUATIONS:
        raise ValueError(
            f"Unit checking is only supported for DifferenceEquations models. "
            f"Current model type: {self.dynamics.typology}"
        )

    # Build variable units mapping
    variable_units = self._build_variable_units()

    # Check each transition
    errors: list[str] = []
    for transition in self.dynamics.transitions:
        # Check main rate
        if transition.rate:
            is_consistent, error_msg = self._check_transition_rate_units(
                transition.rate,
                transition.id,
                variable_units,
                transition.source,
            )
            if not is_consistent and error_msg:
                errors.append(error_msg)

        # Check stratified rates
        if transition.stratified_rates:
            for idx, strat_rate in enumerate(transition.stratified_rates):
                is_consistent, error_msg = self._check_transition_rate_units(
                    strat_rate.rate,
                    f"{transition.id} (stratified rate {idx + 1})",
                    variable_units,
                    transition.source,
                )
                if not is_consistent and error_msg:
                    errors.append(error_msg)

    if errors:
        error_message = "Unit consistency check failed:\n" + "\n".join(
            f"  - {err}" for err in errors
        )
        raise UnitConsistencyError(error_message)

options: show_root_heading: true show_source: true heading_level: 3

Population

Population

Bases: BaseModel

Defines the compartments, stratifications, and initial conditions of the population.

Attributes:

Name Type Description
disease_states list[Bin]

A list of compartments or states that make up the model.

stratifications list[Stratification]

A list of categorical subdivisions of the population.

initial_conditions Initialization

Initial state of the subpopulations and stratifications.

Source code in commol/context/population.py
class Population(BaseModel):
    """
    Defines the compartments, stratifications, and initial conditions of the population.

    Attributes
    ----------
    disease_states : list[Bin]
        A list of compartments or states that make up the model.
    stratifications : list[Stratification]
        A list of categorical subdivisions of the population.
    initial_conditions: Initialization
        Initial state of the subpopulations and stratifications.
    """

    bins: list[Bin]
    stratifications: list[Stratification]
    transitions: list[Transition]
    initial_conditions: InitialConditions

    @field_validator("bins")
    @classmethod
    def validate_bins_not_empty(cls, v: list[Bin]) -> list[Bin]:
        if not v:
            raise ValueError("At least one bin must be defined.")
        return v

    @model_validator(mode="after")
    def validate_unique_ids(self) -> Self:
        """
        Validates that bin and stratification IDs are unique.
        """
        bin_ids = [ds.id for ds in self.bins]
        if len(bin_ids) != len(set(bin_ids)):
            duplicates = [item for item in set(bin_ids) if bin_ids.count(item) > 1]
            raise ValueError(f"Duplicate bin IDs found: {duplicates}")

        stratification_ids = [s.id for s in self.stratifications]
        if len(stratification_ids) != len(set(stratification_ids)):
            duplicates = [
                item
                for item in set(stratification_ids)
                if stratification_ids.count(item) > 1
            ]
            raise ValueError(f"Duplicate stratification IDs found: {duplicates}")

        return self

    @model_validator(mode="after")
    def validate_bin_initial_conditions(self) -> Self:
        """
        Validates initial conditions against the defined model bins.
        """
        initial_conditions = self.initial_conditions

        bins_map = {bin_item.id: bin_item for bin_item in self.bins}

        bin_fractions_dict = {
            bf.bin: bf.fraction for bf in initial_conditions.bin_fractions
        }

        actual_bins = set(bin_fractions_dict.keys())
        expected_bins = set(bins_map.keys())

        if actual_bins != expected_bins:
            missing = expected_bins - actual_bins
            extra = actual_bins - expected_bins
            raise ValueError(
                (
                    f"Initial bin fractions keys must exactly match "
                    f"bin ids. Missing ids: {missing}, Extra ids: {extra}."
                )
            )

        bins_sum_fractions = sum(bin_fractions_dict.values())
        if not math.isclose(bins_sum_fractions, 1.0, abs_tol=1e-6):
            raise ValueError(
                (f"Bin fractions must sum to 1.0, but got {bins_sum_fractions:.7f}.")
            )

        return self

    @model_validator(mode="after")
    def validate_stratified_rates(self) -> Self:
        """
        Validates that stratified rates reference existing stratifications and
        categories.
        """
        strat_map = {strat.id: strat for strat in self.stratifications}

        for transition in self.transitions:
            if transition.stratified_rates:
                for idx, stratified_rate in enumerate(transition.stratified_rates):
                    for condition in stratified_rate.conditions:
                        # Validate stratification exists
                        if condition.stratification not in strat_map:
                            raise ValueError(
                                (
                                    f"In transition '{transition.id}', stratified rate "
                                    f"{idx}: Stratification "
                                    f"'{condition.stratification}' not found. "
                                    f"Available: {list(strat_map.keys())}"
                                )
                            )

                        # Validate category exists
                        strat = strat_map[condition.stratification]
                        if condition.category not in strat.categories:
                            raise ValueError(
                                (
                                    f"In transition '{transition.id}', stratified rate "
                                    f"{idx}: Category '{condition.category}' not found "
                                    f"in stratification '{condition.stratification}'. "
                                    f"Available: {strat.categories}"
                                )
                            )

        return self

    @model_validator(mode="after")
    def validate_stratification_initial_conditions(self) -> Self:
        """
        Validates initial conditions against the defined model Stratification.
        """
        initial_conditions = self.initial_conditions

        strat_map = {strat.id: strat for strat in self.stratifications}

        actual_strat = {
            sf.stratification for sf in initial_conditions.stratification_fractions
        }
        expected_strat = set(strat_map.keys())

        if actual_strat != expected_strat:
            missing = expected_strat - actual_strat
            extra = actual_strat - expected_strat
            raise ValueError(
                (
                    f"Initial stratification fractions keys must exactly match "
                    f"stratification ids. Missing ids: {missing}, Extra ids: {extra}."
                )
            )

        for strat_fractions in initial_conditions.stratification_fractions:
            strat_id = strat_fractions.stratification
            strat_instance = strat_map[strat_id]

            fractions_dict = {
                sf.category: sf.fraction for sf in strat_fractions.fractions
            }

            categories_expected = set(strat_instance.categories)
            categories_actual = set(fractions_dict.keys())

            if categories_actual != categories_expected:
                missing = categories_expected - categories_actual
                extra = categories_actual - categories_expected
                raise ValueError(
                    (
                        f"Categories for stratification '{strat_id}' must exactly "
                        f"match defined categories in instance '{strat_instance.id}'. "
                        f"Missing categories: {missing}, Extra categories: {extra}."
                    )
                )

            strat_sum_fractions = sum(fractions_dict.values())
            if not math.isclose(strat_sum_fractions, 1.0, abs_tol=1e-6):
                raise ValueError(
                    (
                        f"Stratification fractions for '{strat_id}' must sum to 1.0, "
                        f"but got {strat_sum_fractions:.7}."
                    )
                )

        return self

Functions

validate_unique_ids

validate_unique_ids() -> Self

Validates that bin and stratification IDs are unique.

Source code in commol/context/population.py
@model_validator(mode="after")
def validate_unique_ids(self) -> Self:
    """
    Validates that bin and stratification IDs are unique.
    """
    bin_ids = [ds.id for ds in self.bins]
    if len(bin_ids) != len(set(bin_ids)):
        duplicates = [item for item in set(bin_ids) if bin_ids.count(item) > 1]
        raise ValueError(f"Duplicate bin IDs found: {duplicates}")

    stratification_ids = [s.id for s in self.stratifications]
    if len(stratification_ids) != len(set(stratification_ids)):
        duplicates = [
            item
            for item in set(stratification_ids)
            if stratification_ids.count(item) > 1
        ]
        raise ValueError(f"Duplicate stratification IDs found: {duplicates}")

    return self

validate_bin_initial_conditions

validate_bin_initial_conditions() -> Self

Validates initial conditions against the defined model bins.

Source code in commol/context/population.py
@model_validator(mode="after")
def validate_bin_initial_conditions(self) -> Self:
    """
    Validates initial conditions against the defined model bins.
    """
    initial_conditions = self.initial_conditions

    bins_map = {bin_item.id: bin_item for bin_item in self.bins}

    bin_fractions_dict = {
        bf.bin: bf.fraction for bf in initial_conditions.bin_fractions
    }

    actual_bins = set(bin_fractions_dict.keys())
    expected_bins = set(bins_map.keys())

    if actual_bins != expected_bins:
        missing = expected_bins - actual_bins
        extra = actual_bins - expected_bins
        raise ValueError(
            (
                f"Initial bin fractions keys must exactly match "
                f"bin ids. Missing ids: {missing}, Extra ids: {extra}."
            )
        )

    bins_sum_fractions = sum(bin_fractions_dict.values())
    if not math.isclose(bins_sum_fractions, 1.0, abs_tol=1e-6):
        raise ValueError(
            (f"Bin fractions must sum to 1.0, but got {bins_sum_fractions:.7f}.")
        )

    return self

validate_stratified_rates

validate_stratified_rates() -> Self

Validates that stratified rates reference existing stratifications and categories.

Source code in commol/context/population.py
@model_validator(mode="after")
def validate_stratified_rates(self) -> Self:
    """
    Validates that stratified rates reference existing stratifications and
    categories.
    """
    strat_map = {strat.id: strat for strat in self.stratifications}

    for transition in self.transitions:
        if transition.stratified_rates:
            for idx, stratified_rate in enumerate(transition.stratified_rates):
                for condition in stratified_rate.conditions:
                    # Validate stratification exists
                    if condition.stratification not in strat_map:
                        raise ValueError(
                            (
                                f"In transition '{transition.id}', stratified rate "
                                f"{idx}: Stratification "
                                f"'{condition.stratification}' not found. "
                                f"Available: {list(strat_map.keys())}"
                            )
                        )

                    # Validate category exists
                    strat = strat_map[condition.stratification]
                    if condition.category not in strat.categories:
                        raise ValueError(
                            (
                                f"In transition '{transition.id}', stratified rate "
                                f"{idx}: Category '{condition.category}' not found "
                                f"in stratification '{condition.stratification}'. "
                                f"Available: {strat.categories}"
                            )
                        )

    return self

validate_stratification_initial_conditions

validate_stratification_initial_conditions() -> Self

Validates initial conditions against the defined model Stratification.

Source code in commol/context/population.py
@model_validator(mode="after")
def validate_stratification_initial_conditions(self) -> Self:
    """
    Validates initial conditions against the defined model Stratification.
    """
    initial_conditions = self.initial_conditions

    strat_map = {strat.id: strat for strat in self.stratifications}

    actual_strat = {
        sf.stratification for sf in initial_conditions.stratification_fractions
    }
    expected_strat = set(strat_map.keys())

    if actual_strat != expected_strat:
        missing = expected_strat - actual_strat
        extra = actual_strat - expected_strat
        raise ValueError(
            (
                f"Initial stratification fractions keys must exactly match "
                f"stratification ids. Missing ids: {missing}, Extra ids: {extra}."
            )
        )

    for strat_fractions in initial_conditions.stratification_fractions:
        strat_id = strat_fractions.stratification
        strat_instance = strat_map[strat_id]

        fractions_dict = {
            sf.category: sf.fraction for sf in strat_fractions.fractions
        }

        categories_expected = set(strat_instance.categories)
        categories_actual = set(fractions_dict.keys())

        if categories_actual != categories_expected:
            missing = categories_expected - categories_actual
            extra = categories_actual - categories_expected
            raise ValueError(
                (
                    f"Categories for stratification '{strat_id}' must exactly "
                    f"match defined categories in instance '{strat_instance.id}'. "
                    f"Missing categories: {missing}, Extra categories: {extra}."
                )
            )

        strat_sum_fractions = sum(fractions_dict.values())
        if not math.isclose(strat_sum_fractions, 1.0, abs_tol=1e-6):
            raise ValueError(
                (
                    f"Stratification fractions for '{strat_id}' must sum to 1.0, "
                    f"but got {strat_sum_fractions:.7}."
                )
            )

    return self

options: show_root_heading: true show_source: true heading_level: 3

Bins

Bin

Bases: BaseModel

Defines a single bin (base category) in the compartmental model.

A bin represents a fundamental category before stratification. The combination of a bin with all stratifications produces the actual compartments.

Attributes:

Name Type Description
id str

Identifier of the bin.

name str

A descriptive, human-readable name for the bin.

Source code in commol/context/bin.py
class Bin(BaseModel):
    """
    Defines a single bin (base category) in the compartmental model.

    A bin represents a fundamental category before stratification. The combination
    of a bin with all stratifications produces the actual compartments.

    Attributes
    ----------
    id : str
        Identifier of the bin.
    name : str
        A descriptive, human-readable name for the bin.
    """

    id: str = Field(..., description="Identifier of the bin.")
    name: str = Field(..., description="Descriptive, human-readable name for the bin.")

    @override
    def __hash__(self) -> int:
        return hash(self.id)

    @override
    def __eq__(self, other: object) -> bool:
        return isinstance(other, Bin) and self.id == other.id

options: show_root_heading: true show_source: true heading_level: 3

Stratifications

Stratification

Bases: BaseModel

Defines a categorical subdivision of the population.

Attributes:

Name Type Description
id str

Identifier of the stratification.

categories list[str]

List of the different stratification groups identifiers.

Source code in commol/context/stratification.py
class Stratification(BaseModel):
    """
    Defines a categorical subdivision of the population.

    Attributes
    ----------
    id : str
        Identifier of the stratification.
    categories : list[str]
        List of the different stratification groups identifiers.
    """

    id: str = Field(..., description="Identifier of the stratification.")
    categories: list[str] = Field(
        ..., description="List of the different stratification groups identifiers."
    )

    @override
    def __hash__(self) -> int:
        return hash(self.id)

    @override
    def __eq__(self, other: object) -> bool:
        return isinstance(other, Stratification) and self.id == other.id

    @model_validator(mode="after")
    def validate_categories_length(self) -> Self:
        """
        Enforces that categories are not empty.
        """
        if not self.categories:
            raise ValueError(
                (f"Stratification '{self.id}' must have at least one category.")
            )
        return self

    @model_validator(mode="after")
    def validate_categories_uniqueness(self) -> Self:
        """
        Enforces that categories are not repeated.
        """
        categories_set = set(self.categories)

        if len(categories_set) != len(self.categories):
            duplicates = [
                item for item in categories_set if self.categories.count(item) > 1
            ]
            raise ValueError(
                (
                    f"Categories for stratification '{self.id}' must not be repeated. "
                    f"Found duplicates: {list(set(duplicates))}."
                )
            )

        return self

Functions

validate_categories_length

validate_categories_length() -> Self

Enforces that categories are not empty.

Source code in commol/context/stratification.py
@model_validator(mode="after")
def validate_categories_length(self) -> Self:
    """
    Enforces that categories are not empty.
    """
    if not self.categories:
        raise ValueError(
            (f"Stratification '{self.id}' must have at least one category.")
        )
    return self

validate_categories_uniqueness

validate_categories_uniqueness() -> Self

Enforces that categories are not repeated.

Source code in commol/context/stratification.py
@model_validator(mode="after")
def validate_categories_uniqueness(self) -> Self:
    """
    Enforces that categories are not repeated.
    """
    categories_set = set(self.categories)

    if len(categories_set) != len(self.categories):
        duplicates = [
            item for item in categories_set if self.categories.count(item) > 1
        ]
        raise ValueError(
            (
                f"Categories for stratification '{self.id}' must not be repeated. "
                f"Found duplicates: {list(set(duplicates))}."
            )
        )

    return self

options: show_root_heading: true show_source: true heading_level: 3

Parameters

Parameter

Bases: BaseModel

Defines a global model parameter.

Attributes:

Name Type Description
id str

The identifier of the parameter.

value float

Numerical value of the parameter.

description str | None

A human-readable description of the parameter.

unit str | None

The unit of the parameter (e.g., "1/day", "dimensionless", "person"). If None, the parameter has no unit specified.

Source code in commol/context/parameter.py
class Parameter(BaseModel):
    """
    Defines a global model parameter.

    Attributes
    ----------
    id : str
        The identifier of the parameter.
    value : float
        Numerical value of the parameter.
    description : str | None
        A human-readable description of the parameter.
    unit : str | None
        The unit of the parameter (e.g., "1/day", "dimensionless", "person").
        If None, the parameter has no unit specified.
    """

    id: str = Field(..., description="Identifier of the parameter.")
    value: float = Field(..., description="Numerical value of the parameter.")
    description: str | None = Field(
        None, description="Human-readable description of the parameter."
    )
    unit: str | None = Field(
        None,
        description="Unit of the parameter (e.g., '1/day', 'dimensionless', 'person').",
    )

options: show_root_heading: true show_source: true heading_level: 3

Transitions

Transition

Bases: BaseModel

Defines a rule for system evolution.

Attributes:

Name Type Description
id str

Id of the transition.

source list[str]

The origin compartments.

target list[str]

The destination compartments.

rate str | None

Default mathematical formula, parameter name, or constant value for the flow. Used when no stratified rate matches. Numeric values are automatically converted to strings during validation.

Operators: +, -, *, /, % (modulo), ^ or ** (power) Functions: sin, cos, tan, exp, ln, sqrt, abs, min, max, if, etc. Constants: pi, e

Note: Both ^ and ** are supported for exponentiation (** is converted to ^).

Examples: - "beta" (parameter reference) - "0.5" (constant, can also be passed as float 0.5) - "beta * S * I / N" (mathematical formula) - "0.3 * sin(2 * pi * t / 365)" (time-dependent formula) - "2^10" or "2**10" (power: both syntaxes work)

stratified_rates list[StratifiedRate] | None

Stratification-specific rates. Each rate applies to compartments that match all specified stratification conditions.

condition Condition | None

Logical restrictions for the transition.

Source code in commol/context/dynamics.py
class Transition(BaseModel):
    """
    Defines a rule for system evolution.

    Attributes
    ----------
    id : str
        Id of the transition.
    source : list[str]
        The origin compartments.
    target : list[str]
        The destination compartments.
    rate : str | None
        Default mathematical formula, parameter name, or constant value for the flow.
        Used when no stratified rate matches. Numeric values are automatically
        converted to strings during validation.

        Operators: +, -, *, /, % (modulo), ^ or ** (power)
        Functions: sin, cos, tan, exp, ln, sqrt, abs, min, max, if, etc.
        Constants: pi, e

        Note: Both ^ and ** are supported for exponentiation (** is converted to ^).

        Examples:
        - "beta" (parameter reference)
        - "0.5" (constant, can also be passed as float 0.5)
        - "beta * S * I / N" (mathematical formula)
        - "0.3 * sin(2 * pi * t / 365)" (time-dependent formula)
        - "2^10" or "2**10" (power: both syntaxes work)
    stratified_rates : list[StratifiedRate] | None
        Stratification-specific rates. Each rate applies to compartments that match
        all specified stratification conditions.
    condition : Condition | None
        Logical restrictions for the transition.
    """

    id: str = Field(..., description="Id of the transition.")
    source: list[str] = Field(..., description="Origin compartments.")
    target: list[str] = Field(..., description="Destination compartments.")

    rate: str | None = Field(
        None,
        description=(
            "Default rate expression (fallback when no stratified rate matches). "
            "Can be a parameter reference (e.g., 'beta'), a constant (e.g., '0.5'), "
            "or a mathematical expression (e.g., 'beta * S * I / N'). "
            "Numeric values are automatically converted to strings during validation."
        ),
    )

    stratified_rates: list[StratifiedRate] | None = Field(
        None, description="List of stratification-specific rates"
    )

    condition: Condition | None = Field(
        None, description="Logical restrictions for the transition."
    )

    @field_validator("rate", mode="before")
    @classmethod
    def validate_rate(cls, value: str | None) -> str | None:
        """
        Convert numeric rates to strings and perform security and syntax validation.
        """
        if value is None:
            return value
        try:
            validate_expression_security(value)
            commol_rs.core.MathExpression(value).validate()
        except ValueError as e:
            raise ValueError(f"Validation failed for rate '{value}': {e}")
        return value

Functions

validate_rate classmethod

validate_rate(value: str | None) -> str | None

Convert numeric rates to strings and perform security and syntax validation.

Source code in commol/context/dynamics.py
@field_validator("rate", mode="before")
@classmethod
def validate_rate(cls, value: str | None) -> str | None:
    """
    Convert numeric rates to strings and perform security and syntax validation.
    """
    if value is None:
        return value
    try:
        validate_expression_security(value)
        commol_rs.core.MathExpression(value).validate()
    except ValueError as e:
        raise ValueError(f"Validation failed for rate '{value}': {e}")
    return value

options: show_root_heading: true show_source: true heading_level: 3

Initial Conditions

InitialConditions

Bases: BaseModel

Initial conditions for a simulation.

Attributes:

Name Type Description
population_size int

Population size.

bin_fractions list[BinFraction]

List of bin fractions. Each item contains a bin id and its initial fractional size.

stratification_fractions (list[StratificationFractions], optional)

List of stratification fractions. Each item contains a stratification id and its category fractions.

Source code in commol/context/initial_conditions.py
class InitialConditions(BaseModel):
    """
    Initial conditions for a simulation.

    Attributes
    ----------
    population_size : int
        Population size.
    bin_fractions : list[BinFraction]
        List of bin fractions. Each item contains a bin id and
        its initial fractional size.
    stratification_fractions : list[StratificationFractions], optional
        List of stratification fractions. Each item contains a stratification id and
        its category fractions.
    """

    population_size: int = Field(..., description="Population size.")
    bin_fractions: list[BinFraction] = Field(
        ...,
        description=(
            "List of bin fractions. Each item contains a bin id "
            "and its initial fractional size."
        ),
    )
    stratification_fractions: list[StratificationFractions] = Field(
        default_factory=list,
        description=(
            "List of stratification fractions. Each item contains a stratification id "
            "and its category fractions."
        ),
    )

options: show_root_heading: true show_source: true heading_level: 3

Dynamics

Dynamics

Bases: BaseModel

Defines how the system evolves.

Attributes:

Name Type Description
typology Literal['DifferenceEquations']

The type of model.

transitions List[Transition]

A list of rules for state changes.

Source code in commol/context/dynamics.py
class Dynamics(BaseModel):
    """
    Defines how the system evolves.

    Attributes
    ----------
    typology : Literal["DifferenceEquations"]
        The type of model.
    transitions : List[Transition]
        A list of rules for state changes.
    """

    typology: Literal[ModelTypes.DIFFERENCE_EQUATIONS]
    transitions: list[Transition]

    @field_validator("transitions")
    @classmethod
    def validate_transitions_not_empty(cls, v: list[Transition]) -> list[Transition]:
        if not v:
            raise ValueError("At least one transition must be defined.")
        return v

    @model_validator(mode="after")
    def validate_unique_transition_ids(self) -> Self:
        """
        Validates that transition IDs are unique.
        """
        transition_ids = [t.id for t in self.transitions]
        if len(transition_ids) != len(set(transition_ids)):
            duplicates = [
                item for item in set(transition_ids) if transition_ids.count(item) > 1
            ]
            raise ValueError(f"Duplicate transition IDs found: {duplicates}")
        return self

Functions

validate_unique_transition_ids

validate_unique_transition_ids() -> Self

Validates that transition IDs are unique.

Source code in commol/context/dynamics.py
@model_validator(mode="after")
def validate_unique_transition_ids(self) -> Self:
    """
    Validates that transition IDs are unique.
    """
    transition_ids = [t.id for t in self.transitions]
    if len(transition_ids) != len(set(transition_ids)):
        duplicates = [
            item for item in set(transition_ids) if transition_ids.count(item) > 1
        ]
        raise ValueError(f"Duplicate transition IDs found: {duplicates}")
    return self

options: show_root_heading: true show_source: true heading_level: 3